skip to main content


Search for: All records

Creators/Authors contains: "Kushner, Paul J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Evaporation adds moisture to the atmosphere, while condensation removes it. Condensation also adds thermal energy to the atmosphere, which must be removed from the atmosphere by radiative cooling. As a result of these two processes, there is a net flow of energy driven by surface evaporation adding energy and radiative cooling removing energy from the atmosphere. Here, we calculate the implied heat transport of this process to find the atmospheric heat transport in balance with the surface evaporation. In modern-day Earth-like climates, evaporation varies strongly between the equator and the poles, while the net radiative cooling in the atmosphere is nearly meridionally uniform, and as a consequence, the heat transport governed by evaporation is similar to the total poleward heat transport of the atmosphere. This analysis is free from cancellations between moist and dry static energy transports, which greatly simplifies the interpretation of atmospheric heat transport and its relationship to the diabatic heating and cooling that governs the atmospheric heat transport. We further demonstrate, using a hierarchy of models, that much of the response of atmospheric heat transport to perturbations, including increasing CO 2 concentrations, can be understood from the distribution of evaporation changes. These findings suggest that meridional gradients in surface evaporation govern atmospheric heat transport and its changes. 
    more » « less
    Free, publicly-accessible full text available June 20, 2024
  2. Abstract

    Arctic amplification of anthropogenic climate change is widely attributed to the sea-ice albedo feedback, with its attendant increase in absorbed solar radiation, and to the effect of the vertical structure of atmospheric warming on Earth’s outgoing longwave radiation. The latter lapse rate feedback is subject, at high latitudes, to a myriad of local and remote influences whose relative contributions remain unquantified. The distinct controls on the high-latitude lapse rate feedback are here partitioned into “upper” and “lower” contributions originating above and below a characteristic climatological isentropic surface that separates the high-latitude lower troposphere from the rest of the atmosphere. This decomposition clarifies how the positive high-latitude lapse rate feedback over polar oceans arises primarily as an atmospheric response to local sea ice loss and is reduced in subpolar latitudes by an increase in poleward atmospheric energy transport. The separation of the locally driven component of the high-latitude lapse rate feedback further reveals how it and the sea-ice albedo feedback together dominate Arctic amplification as a coupled mechanism operating across the seasonal cycle.

     
    more » « less
  3. Abstract

    Given uncertainty in the processes involved in polar amplification, elucidating the role of poleward heat and moisture transport is crucial. The Polar Amplification Model Intercomparison Project (PAMIP) permits robust separation of the effects of sea ice loss from sea surface warming under climate change. We utilize a moist isentropic circulation framework that accounts for moisture transport, condensation, and eddy transport, in order to analyze the circulation connecting the mid‐latitudes and the Arctic. In PAMIP's atmospheric general circulation model experiments, prescribed sea ice loss reduces poleward heat transport (PHT) by warming the returning moist isentropic circulation at high latitudes, while prescribed warming of the ocean surface increases PHT by strengthening the moist isentropic circulation. Inter‐model spread of PHT into the Arctic reflects the tug‐of‐war between sea‐ice and surface‐warming effects.

     
    more » « less